ТЕХИНДАКТ
Научно - производственное предприятие

Поверхностный эффект и его влияние на нагрев

Поверхностный эффект (скин эффект) – это эффект оттеснения переменного электрического тока, протекающего через проводник, к его периферии, вызванный переменным магнитным полем, создаваемым этим током.

Этот эффект имеет высокое значение в области высоких частот и приводит к существенному сокращению эффективной площади сечения проводников. Это приводит к повышенному тепловыделению в проводниках при протекании через них электрического тока и в большинстве случаев требует принятия дополнительных мер для ослабления поверхностного эффекта.
Внимание! Это важно!
Как это работает?
Механизм возникновения поверхностного эффекта стоит рассмотреть на примере проводника круглого сечения, по которому протекает переменный электрический ток. На рисунке представлен проводник в разрезе которого отражены протекающие при скин-эффекте процессы.
Поверхностный эффект, скин-эффект

Поверхностный эффект (скин эффект) – это эффект оттеснения переменного электрического тока, протекающего через проводник, к его периферии, вызванный переменным магнитным полем, создаваемым этим током.

Физически это можно представить как возникновение дополнительной распределенной электродвижущей силы внутри проводника, сонаправленной с направлением протекания тока вблизи периферии проводника и противонаправленной вблизи его оси. Этот эффект приводит к неравномерному распределению протекающего электрического тока в проводнике, при котором большая часть тока протекает в поверхностном слое.
Этот эффект имеет высокое значение в области высоких частот и приводит к существенному сокращению эффективной площади сечения проводников. Это приводит к повышенному тепловыделению в проводниках при протекании через них электрического тока и в большинстве случаев требует принятия дополнительных мер для ослабления поверхностного эффекта.
График распределения плотности тока представлен на рисунке. Эта зависимость имеет экспоненциальный характер и недостаточно удобна при оценке.
Поэтому в инженерных расчетах делается следующее упрощение. Глубина, на которой величина плотности тока в 2,7 раза меньше максимальной, считается пограничной, и по этой границе формируется условный внешний слой толщиной Δ, по которому равномерно протекает весь ток проводника. Во внутренней же части проводника (обозначена белым) считается, что ток не протекает. Этот внешний слой называется скин-слоем, а его величина определяется свойствами материала проводника и частотой протекающего тока.

Из рисунка видно, что сечение проводника, по которому протекает электрический ток, может быть значительно меньше действительного сечения проводника. Это приводит к избыточному нагреву проводника и потерям электрической мощности на этот нагрев. В условиях передачи высокочастотной электроэнергии по проводнику этот нагрев является крайне нежелательным и требует специальных мер по его снижению.
Распределение тока в проводнике при скин-эффекте
Индукционный нагрев конца вращающегося вала
Толщина скин-слоя зависит от частоты, удельного электрического сопротивления материала и его магнитной проницаемости. Ярко выраженное изменение толщины скин-слоя происходит при нагреве сплавов на основе железа в сечении заготовки при переходе точки Кюри: толщина скин-слоя при этом увеличивается на порядок, визуально наблюдается утолщение области нагрева.

Поверхностный эффект имеет огромное значение в индукционном нагреве, поскольку с его помощью можно концентрировать выделение тепловой энергии в поверхности заготовки.
Это связано с тем, что нагрев производится вихревыми переменными токами внутри детали, которые протекают также, как и в рассмотренном проводнике, во внешних слоях материала. Это широко используется, например, при поверхностной закалке, когда закаливается только поверхность детали, не изменяя металл в глубине. Для многих задач именно поверхности требуют особой твердости материала.
Использование высоких частот для объемного нагрева возможно, однако в этом случае, поскольку энергия выделяется в тонком слое, нагрев более глубоких зон будет производится только за счет теплопроводности металла, что увеличивает длительность нагрева и снижает ее равномерность.

Таким образом, для глубинного равномерного нагрева крупных стальных заготовок следует использовать более низкие частоты, в то время как для нагрева небольших деталей, поверхностной закалки или для нагрева немагнитных металлов необходимы установки с более высокими рабочими частотами.